#### 5.1 The Product Rule and Power Rules for Exponents

Base

Exponent/Power

## **EXAMPLE 1** Using Exponents

Write  $3 \cdot 3 \cdot 3 \cdot 3$  in exponential form and evaluate.

## **EXAMPLE 2** Evaluating Exponential Expressions

Evaluate. Name the base and the exponent.

(a) 
$$5^4$$

(b) 
$$-5^4$$

(c) 
$$(-5)^4$$

$$(d) (-5)^3$$

$$(e) - (-5)^3$$

#### **Product rule for exponents**

## **EXAMPLE 3** Using the Product Rule

Use the product rule for exponents to find each product if possible.

(a) 
$$6^3 \cdot 6^5$$

**(b)** 
$$(-4)^7(-4)^2$$
 **(c)**  $x^2 \cdot x$  **(d)**  $m^4m^3m^5$ 

(c) 
$$x^2 \cdot x$$

(d) 
$$m^4 m^3 m^5$$

1

(e) 
$$2^3 \cdot 3^2$$

(f) 
$$2^3 + 2^4$$

(f) 
$$2^3 + 2^4$$
 (g)  $(2x^3)(3x^7)$ 

(h) 
$$(m+n)^2(m+n)^3$$

Power rules for exponents

a)

h)

c)

**Example 4:** Use the Power Rules for exponents to simplify each expression.

a) 
$$(2^5)^3$$

b) 
$$(5^7)^2$$

c) 
$$(x^2)^5$$

d) 
$$(3xy)^2$$

e) 
$$5(4pq)^2$$

f) 
$$3(2m^2p^3)^4$$

g) 
$$(-5^6)^3$$

h) 
$$\left(\frac{2}{3}\right)^5$$

i) 
$$\left(\frac{m}{n}\right)^3$$

$$j) \left(\frac{1}{5}\right)^4$$

**Example 5: Simplify by using a combination of rules.** 

(a) 
$$\left(\frac{2}{3}\right)^2 \cdot 2^3$$

**(b)** 
$$(5x)^3(5x)^4$$

(c) 
$$(2x^2y^3)^4(3xy^2)^3$$

**(d)** 
$$(-x^3y)^2(-x^5y^4)^3$$

**Example 6: Using Area Formulas.** Find an expression that represents the area in each figure.

a)



b)



#### 5.2 Integer Exponents and the Quotient Rules

OBJECTIVES

- 1 Use 0 as an exponent.
- 2 Use negative numbers as exponents.
- 3 Use the quotient rule for exponents.
- 4 Use combinations of rules.

Zero exponent

## **EXAMPLE 1** Using Zero Exponents

Evaluate.

- (a)  $60^{\circ}$
- (c)  $-60^{\circ}$
- (e)  $6y^0$
- (g)  $8^0 + 11^0$

- **(b)**  $(-60)^0$
- (d)  $y^0$
- (f)  $(6y)^0$
- **(h)**  $-8^{\circ} 11^{\circ}$

#### **Negative exponents**

## **EXAMPLE 2** Using Negative Exponents

Simplify by writing with positive exponents. Assume that all variables represent nonzero real numbers.

- (a)  $3^{-2}$
- **(b)**  $5^{-3}$
- (c)  $\left(\frac{1}{2}\right)^{-3}$
- (d)  $\left(\frac{2}{5}\right)^{-4}$

- (e)  $\left(\frac{4}{3}\right)^{-5}$
- (f)  $4^{-1} 2^{-1}$  (g)  $p^{-2}$
- (h)  $\frac{1}{y^{-4}}$
- (i)  $x^3y^{-4}$

#### **Changing from Negative to Positive Exponents**

For any nonzero numbers a and b and any integers m and n, the following are true.

$$\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m} \quad \text{and} \quad \left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^m$$

Examples: 
$$\frac{3^{-5}}{2^{-4}} = \frac{2^4}{3^5}$$
 and  $\left(\frac{4}{5}\right)^{-3} = \left(\frac{5}{4}\right)^3$ 

## **EXAMPLE 3** Changing from Negative to Positive Exponents

Simplify by writing with positive exponents. Assume that all variables represent nonzero real numbers.

(a) 
$$\frac{4^{-2}}{5^{-3}}$$

**(b)** 
$$\frac{m^{-5}}{p^{-1}}$$

(c) 
$$\frac{a^{-2}b}{3d^{-3}}$$

(d) 
$$\left(\frac{x}{2v}\right)^{-4}$$

**Quotient rule for exponents** 

## **EXAMPLE 4** Using the Quotient Rule

Simplify by writing with positive exponents. Assume that all variables represent nonzero real numbers.

(a) 
$$\frac{5^8}{5^6}$$

(b) 
$$\frac{4^2}{4^9}$$

(c) 
$$\frac{5^{-3}}{5^{-7}}$$

(d) 
$$\frac{q^5}{q^{-3}}$$

(e) 
$$\frac{3^2x^5}{3^4x^3}$$

(f) 
$$\frac{(m+n)^{-2}}{(m+n)^{-4}}$$

(g) 
$$\frac{7x^{-3}y^2}{2^{-1}x^2y^{-5}}$$

# **EXAMPLE 5** Using Combinations of Rules

Simplify. Assume that all variables represent nonzero real numbers.

(a) 
$$\frac{(4^2)^3}{4^5}$$

**(b)** 
$$(2x)^3(2x)^2$$

(c) 
$$\left(\frac{2x^3}{5}\right)^{-4}$$

(d) 
$$\left(\frac{3x^{-2}}{4^{-1}y^3}\right)^{-3}$$

(e) 
$$\frac{(4m)^{-3}}{(3m)^{-4}}$$

#### 5.3 An Application of Exponents: Scientific Notation

#### OBJECTIVES

1 Express numbers in scientific notation.

2 Convert numbers in scientific notation to numbers without exponents.

3 Use scientific notation in calculations.

Scientific Notation

## **EXAMPLE 1** Using Scientific Notation

Write each number in scientific notation.

- (a) 93,000,000
- **(b)** 63,200,000,000
- (c) 0.00462
- (d) -0.0000762

## **EXAMPLE 2** Writing Numbers without Exponents

Write each number without exponents.

- (a)  $6.2 \times 10^3$
- **(b)**  $4.283 \times 10^6$
- (c)  $7.04 \times 10^{-3}$

# EXAMPLE 3 Multiplying and Dividing with Scientific Notation

Perform each calculation.

(a) 
$$(7 \times 10^3)(5 \times 10^4)$$

**(b)** 
$$\frac{4 \times 10^{-5}}{2 \times 10^{3}}$$

(c) 
$$(3 \times 10^4)(8 \times 10^7)$$

(d) 
$$\frac{6 \times 10^{-2}}{2 \times 10^8}$$

### EXAMPLE 4 Using Scientific Notation to Solve an Application

A *nanometer* is a very small unit of measure that is equivalent to about 0.0000003937 in. About how much would 700,000 nanometers measure in inches? (Source: World Almanac and Book of Facts.)

## EXAMPLE 5 Using Scientific Notation to Solve an Application

In 2008, the national debt was  $$1.0025 \times 10^{13}$  (which is more than \$10 trillion). The population of the United States was approximately 304 million that year. About how much would each person have had to contribute in order to pay off the national debt? (*Source*: Bureau of Public Land; U.S. Census Bureau.)

#### 5.4 Adding and Subtracting Polynomials; Graphing Simple Polynomials

#### OBJECTIVES

- 1 Identify terms and coefficients.
- 2 Add like terms.
- 3 Know the vocabulary for polynomials.
- 4 Evaluate polynomials.
- 5 Add and subtract polynomials.
- 6 Graph equations defined by polynomials of degree 2.

Terms

Numerical coefficient

### **EXAMPLE 1** Identifying Coefficients

Name the coefficient of each term in these expressions.

(a) 
$$x - 6x^4$$

**(b)** 
$$5 - v^3$$

## **EXAMPLE 2** Adding Like Terms

Simplify by adding like terms.

(a) 
$$-4x^3 + 6x^3$$

**(b)** 
$$9x^6 - 14x^6 + x^6$$

(c) 
$$12m^2 + 5m + 4m^2$$

(d) 
$$3x^2y + 4x^2y - x^2y$$

**Standard form** 

Degree of a term

Degree of a polynomial

Monomial

**Binomial** 

**Trinomial** 

| Term                            | Degree | Polynomial         | Degree |
|---------------------------------|--------|--------------------|--------|
| 3x <sup>4</sup>                 |        | $3x^4 - 5x^2 + 6$  |        |
| 5x, or 5x1                      |        | 5x + 7             |        |
| −7, or −7 <i>x</i> <sup>0</sup> |        | $x^2y + xy - 5y^2$ |        |
| $2x^2y$ , or $2x^2y^1$          |        | $x^5 + 3x^6$       |        |

## **EXAMPLE 3** Classifying Polynomials

For each polynomial, first simplify, if possible. Then give the degree and tell whether the polynomial is a *monomial*, a *binomial*, a *trinomial*, or *none of these*.

(a) 
$$2x^3 + 5$$

**(b)** 
$$4xy - 5xy + 2xy$$

## **EXAMPLE 4** Evaluating a Polynomial

Find the value of  $3x^4 + 5x^3 - 4x - 4$  for **(a)** x = -2 and **(b)** x = 3.

#### **Adding polynomials**

## **EXAMPLE 5** Adding Polynomials Vertically

(a) Add: 
$$(6x^3 - 4x^2 + 3) + (-2x^3 + 7x^2 - 5)$$
.

## **EXAMPLE 6** Adding Polynomials Horizontally

(a) Add: 
$$(6x^3 - 4x^2 + 3) + (-2x^3 + 7x^2 - 5)$$
.

#### **Subtracting polynomials**

## **EXAMPLE 7** Subtracting Polynomials Horizontally

- (a) Perform the subtraction (5x 2) (3x 8).
- (**b**) Subtract:  $(6x^3 4x^2 + 2) (11x^3 + 2x^2 8)$ .

## **EXAMPLE 8** Subtracting Polynomials Vertically

Subtract by columns to find

$$(14y^3 - 6y^2 + 2y - 5) - (2y^3 - 7y^2 - 4y + 6).$$

# EXAMPLE 9 Adding and Subtracting Polynomials with More Than One Variable

Add or subtract as indicated.

(a) 
$$(4a + 2ab - b) + (3a - ab + b)$$

**(b)** 
$$(2x^2y + 3xy + y^2) - (3x^2y - xy - 2y^2)$$

(c) 
$$(8a^3 - 2a^2 + 3) + (-2a^3 + 6a - 2)$$
.

#### **5.5 Multiplying Polynomials**

#### OBJECTIVES

- 1 Multiply a monomial and a polynomial.
- 2 Multiply two polynomials.
- 3 Multiply binomials by the FOIL method.

## **EXAMPLE 1** Multiplying Monomials and Polynomials

Find each product.

(a) 
$$4x^2(3x + 5)$$

**(b)** 
$$-8m^3(4m^3 + 3m^2 + 2m - 1)$$

## **EXAMPLE 2** Multiplying Two Polynomials

Multiply 
$$(m^2 + 5)(4m^3 - 2m^2 + 4m)$$
.

b) Multiply 
$$(x^3 + 2x^2 + 4x + 1)(3x + 5)$$
.

# EXAMPLE 4 Multiplying Polynomials with Fractional Coefficients

Find the product of  $4m^3 - 2m^2 + 4m$  and  $\frac{1}{2}m^2 + \frac{5}{2}$ .

#### **FOIL**

## EXAMPLE 5 Using the FOIL Method

Use the FOIL method to find the product (x + 8)(x - 6).

## EXAMPLE 6 Using the FOIL Method

Multiply (9x - 2)(3y + 1).

# EXAMPLE 7 Using the FOIL Method

Find each product.

(a) 
$$(2k + 5y)(k + 3y)$$

(c) 
$$2x^2(x-3)(3x+4)$$

#### **5.6 Special Products**

#### OBJECTIVES

- 1 Square binomials.
- 2 Find the product of the sum and difference of two
- 3 Find greater powers of binomials.

## EXAMPLE 1 Squaring a Binomial

Find  $(m + 3)^2$ .

## **EXAMPLE 2** Squaring Binomials

Find each binomial square and simplify.

(a) 
$$(5z - 1)^2$$

**(b)** 
$$(3b + 5r)^2$$

(c) 
$$(2a - 9x)^2$$

(d) 
$$\left(4m+\frac{1}{2}\right)^2$$

(e) 
$$x(4x-3)^2$$

#### **Conjugates:**

**Example 3: Find the product of each set of conjugates.** 

(a) 
$$(x + 4)(x - 4)$$

**(b)** 
$$(x + 10)(x - 10)$$

(c) 
$$(x-5)(x+5)$$

(d) 
$$\left(\frac{2}{3} - w\right)\left(\frac{2}{3} + w\right)$$

(e) 
$$(5m-3)(5m+3)$$

(f) 
$$(4x - 6y)(4x + 6y)$$

$$(\mathbf{g}) \left(z - \frac{1}{4}\right) \left(z + \frac{1}{4}\right)$$

# **EXAMPLE 5** Finding Greater Powers of Binomials

Find each product.

(a) 
$$(x + 5)^3$$

(c) 
$$-2r(r+2)^3$$